General Specifications

pH and ORP Sensors

GS 12B07B02-E

GENERAL

Yokogawa's process pH and ORP meters are highly reliable and feature advanced functions which are useful for a wide variety of applications including water quality management in a broad range of production processes and medium-sized wastewater treatment plants, or for general pH and ORP control systems. Based on Yokogawa's track record and years of experience, a comprehensive range of products has been produced to provide solutions best suited to individual applications.

In addition to the PH8EFP and PH8ERP standard Ryton pH sensors, our line of pH sensors has been strengthened by the inclusion of the solid electrolyte pH sensor HA405, pH sensor for chemical processes DPA405, pH sensor and hydrofluoric acid-resistant pH sensor HF405 to cope with applications where standard sensors cannot be used. For reliable measurement of pH of high purity water in boilers and semiconductor process applications, the pH sensor PH8EHP and holder PH8HH are offered.

Like the pH sensor series, the ORP sensor series is also offered as a complete lineup with the solid electrolyte ORP sensor HA485, ORP sensor for chemical processes DPA485 in addition to the OR8EFG and OR8ERG standard Ryton ORP sensors.

FEATURES

Ryton pH/ORP Sensors PH8EFP, PH8ERP, OR8EFG, OR8ERG

- •With the body made of Ryton, a strong engineering plastic, which is comparable to Teflon in terms of corrosion resistance and heat resistance, it allows for a wide range of applications.
- •A single type of sensor can support all applications regardless of whether a holder or cleaner is used.
- •The integrated-sensor design simplifies calibration with standard solutions and maintenance.
- •The pH glass electrode of a pH sensor, the platinum or gold electrode of a ORP sensor and junction can be individually replaced.

Solid Electrolyte pH/ORP Sensors (Xerolyt) : HA405, HA485

- Allows pH measurement under severe conditions, such as where the process fluid is heavily contaminated or contains sulfide.
- •With solid polymer used as the inner solution, the liquid junction is large (1.0 to 1.5 mm), which prevents clogging.

pH/ORP Sensors for Chemical Processes : DPA405, DPA485

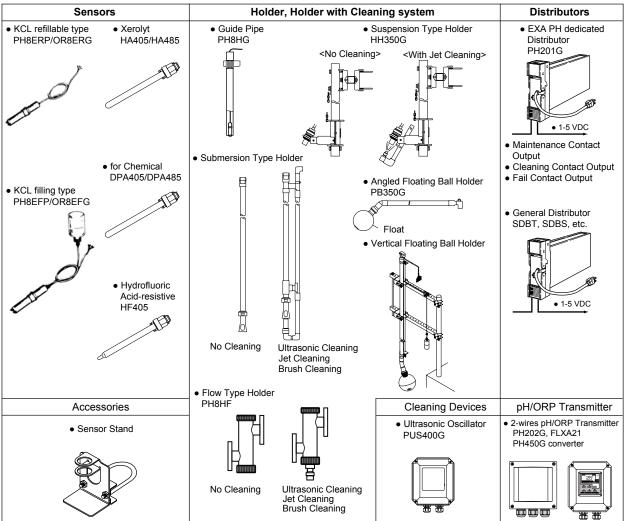
- •Extremely long life span for pH measurement in electrolytic processes.
- •With the pressurized inner solution there is no need for a pressure holder.
- •The silver barrier incorporated in the reference electrode inhibits the generation of sulfide around the liquid junction.

Hydrofluoric Acid-Resistant pH Sensor (HF405)

- •The special sensing membrane allows measurement of solutions or drainage containing hydrofluoric acid.
- •With solid polymer used as the inner solution, the liquid junction for the process fluid is large (1.0 to 1.5 mm), which prevents clogging.

pH Sensor for High Purity Water: PH8EHP

- •The dedicated holder provides solutions to problems that arise when measuring high-purity water.
- Combined with PH202, FLXA21, PH450G, compensates for the effect of fluid temperature.


Any company's names and product names mentioned in this GS are names, trademarks or registered trademarks of their respective companies.

Yokogawa Electric Corporation 2-9-32, Nakacho, Musashino-shi, Tokyo 180-8750, Japan Tel.: 81-422-52-5617 Fax.: 81-422-52-6792 GS 12B07B02-E ©Copyright Jan. 2000 7th Edition May 2015

SYSTEM CONFIGURATION

For the PH202, FLXA21 2-Wire Type pH/ORP transmitter, see GS 12B07D02-E, GS 12A01A02-01E and for the PH450G 4-Wire Type pH Converter, see GS 12B07C05-01E. For the holders or cleaning devices, see GS 12J05C02-00E.

Fig. 1-b System Configuration (For Pure Water)

pH sensor	Holder	Accessories	pH Transmitter	Distributors
• For pure water PH8EHP	• For pure water PH8HH	PH8AX • Sensor Stand	• 2-wires pH Transmitter PH202G, FLXA21 PH450G converter	Same as for General Purpose or Non-Explosionproof Types

F01.ai

SPECIFICATIONS

1. pH Sensor

1-1. Common Specifications

Measurement principle Measuring range

Measured	obiect
	· · j · · ·

:Hydrogen ion concentration (pH) in aqueous solution :Glass electrode method :Different by used sensor Measurement conditions: Process temperature ;See Table 1

Process pressure :See Table 2

Table 1. Process Temperature Range

pH Sensor	Holder Type *2	Holder Material *1	Cleaner	Adapter Material *1	pH Range	Temperature (°C)
	Guide-pipe	PVC	None			-5 to 50
	(PH8HG)	PP	None]		-5 to 80
	Submersion (PH8HS)	PP	None, Provided]		-5 to 80
PE8ERP	Flow-through (PH8HF)	SS	None, Provided		2 to 12	-5 to 80
	Suspension (HH350G)	SS	None, Provided			-5 to 80
	Float (PB350G, PB360G)	PP, SS	None			-5 to 50
	Guide-pipe	PVC	None	1	2 to 12	-5 to 50
	(PH8HG)	PP	None		21012	-5 to 80
	Submersion	PP,	None	Not used		-5 to 100
	(PH8HS)	SS	Provided]		-5 to 80
	Flow-through (PH8HF) SS	PP	None, Provided			-5 to 80
PH8EFP		None			-5 to 105	
		33	Provided]	0 to 14	-5 to 80
	Suspension (HH350G)	SS	None, Provided			-5 to 80
	Float (PB350G, PB360G)	PP, SS	None			-5 to 50
PH8EHP	High purity water(PH8HH)	Acryl	None		2 to 12	0 to 50
		N	None	PVC		0 to 50
	Submersion	PP,	F	PP,SS]	0 to 100
	(PH8HS)	(PH8HS) SS Provided	PVC	HA405	0 to 50	
HA405			Flovided	PP,SS	2 to 14	0 to 80
*3		PP	None,	PVC	DDA 405	0 to 50
DPA405 *3			Provided	PP,SS	DPA405 0 to 14	0 to 80
HF405				PVC		0 to 50
*3	Flow-through (PH8HF)		None	PP	HF405	0 to 80
		SS		SS	2 to 11	0 to 100
			Provided	PP,SS		0 to 80
			1 TOVIDED	PVC		0 to 50

Note: PV:Rigid Polyvinyl, PP: Polypropylene, SS: Stainless Steel

Stainless steel holder and Stainless steel adapter should be used *1 when the pH value of the solution is pH3 or more acidic. *2 For flow-through types, refer also to the solution temperature and

pressure diagram of Holder GS 12J05C02-00E. *3 Only jet cleaning system can be used for HA405, DPA405 or HF405.

Table 2. Process Pressure Range

pH Sensor Holder	PH8ERP	PH8EFP	HA405 HF405	DPA405 *2
Submersion	Atmospheric p	oressure(Subm	ersion depth: N	1ax. 3m)
Guide-pipe Suspension Float	Atmospheric pressure (Submersion depth: Max.3m)		Not used	
Flow-through	Atmospheric	Atmospheric pressure to 10kPa *3	Atmospheric	Atmospheric
*1	pressure to 50kPa	Atmospheric pressure to 500kPa *4	pressure to 500kPa	pressure to 250kPa

*1 For flow-through types, refer also to the solution temperature and pressure diagram of Holder GS 12J05C02-00E.

*2 Available measuring pressure decreases when the inner pressure of DPA405 decreases.

*3 When general purpose reserve tank used.

*4

When medium-pressure reserve tank used.

Table 3. Selection for pH Sensor

pH Sensor Application	PH8ERP PH8EFP	PH8EHP	HA405	DPA405	HF405
General purpose	0	×	-	-	-
High purity water	×	0	×	×	×
Contaminating and sulfide- containing solutions	×	×	0	×	×
Caustic electrolysis solutions Solutions containing organic solvents	×	×	×	0	×
Waste water containing hydrofluoric acid *1	×	×	×	×	0

Confirm the specifications of hydrofluoric acid concentration upper limit. Consult sales personnel about selection for pH sensor because Note: the table above is just for reference.

1-2. KCI Refillable Type Sensor (PH8ERP)

1-2. KCI Kelillable Type Selisor (FROERF)
Measuring range: pH2 to 12
Measuring temperature: -5 to 80°C
(See Table 1 when using holder)
Measuring pressure: Atmospheric pressure to 50 kPa
(See Table 2 when using holder)
Temperature compensation sensor: Pt1000
Wetted part materials:
Body; Ryton (PPS resin), glass, titanium or
Hastelloy C, ceramics, fluorocarbon
rubber or Daielperfrow rubber
Cable; Chlorinated polyethylene rubber (Cable
sheath)
Weight: Approx. 0.4 kg
1-3. KCI Filling Type Sensor PH8EFP
Measuring range: pH0 to 14
Measuring temperature: -5 to 105°C
(-5 to 80°C when using Guide-pipe holder)
(See Table 1 when using holder)
•• •

Measuring pressure: Atmospheric pressure to 10 kPa (General purpose or big volume tank 500 mL) (See Table 2 when using holder) Atmospheric pressure to 500 kPa (Medium pressure)

(See Table 2 when using holder) Pt1000 Temperature compensation sensor:

Wetted part materials: Body: Ryton (PPS resin), glass, titanium or Hastelloy C, ceramics, teflon, fluorocarbon rubber or Daielperfrow rubber Cable; Chlorinated polyethylene rubber (Cable sheath) KCI tube; Heat-resistant soft PVC (General purpose or big volume tank 500mL), Polyethylene (Medium pressure) Weight: Sensor; Approx. 0.4 kg, Approx. 0.3 kg (General purpose), Approx. 1 kg (Medium pressure), Tank: Approx. 0.8 kg (Big-volume) 1-4. Solid Electrolyte pH Sensor (Xerolyt) HA405 Measuring range: pH2 to 14 Measuring temperature: 0 to 110°C (See Table 1 when using holder) Measuring pressure: Atmospheric pressure to 1.6MPa (Temperature 25°C) Atmospheric pressure to 600kPa (Temperature 100°C) (See Table 2 when using holder) Internal electrolyte: Solid polymer including KCI (Xerolyt) Temperature compensation sensor: None (Manual temperature compensation on the converter or transmitter) (Use the adapter with temperature sensor SA405 for application where the temperature varies) Applicable holder: Flow-through holder (PH8HF), Submersion holder (PH8HS) (An optional adapter is needed, but not needed when using the adapter with temperature sensor SA405). Ultrasonic cleaning is not available. Only jet cleaning is available when cleaning is necessary. Wetted part materials: Body Glass Silicon rubber or Daielperfrow rubber O-ring Stainless steel (316 SS), polypropylene Adapter or rigid polyvinyl chloride CAUTION ON USE: This sensor cannot be used outdoors, even when using with a holder, this sensor cannot be used outdoors due to exposure to rain or due to condensation at a high humid place. This sensor cannot be used with a guidepipe holder. The sensor must be installed in a vertical position. It can not be installed from below and in a horizontal position, either. The sensor may not stand a long-term use in solutions containing organic solvents because of the erosion of its internal electrolyte polymer. 1-5. pH Sensors for Chemical Processes (DPA405) pH0 to 14 Measuring range: Measuring temperature: 0 to 100°C (See Table 1 when using holder) Measuring pressure: Atmospheric pressure to 250 kPa (Depending on the inner pressure of the sensor) (See Table 2 when using holder) High-viscosity gel Internal electrolyte:

Temperature compensation sensor: None (Manual temperature compensation on the converter or transmitter) (Use adapter with temperature sensor (SA405) for application where the temperature varies) Applicable holder: Flow-through holder (PH8HF), Submersion holder (PH8HS) (An optional adapter is needed, but not needed when using an adapter with temperature sensor SA405.) Ultrasonic cleaning is not available. Only jet cleaning is available when cleaning is necessary. Use O-ring covered by Teflon (K9148MR) when using a special holder for electrolytic processes Wetted part materials: Body; Glass O-ring; Silicon rubber or Daielperfrow rubber Adapter; Stainless steel (316 SS), polypropylene, rigid polyvinyl chloride, heat-resistant polyvinyl chloride or titanium CAUTION ON USE: This sensor cannot be used outdoors, even when using with a holder, this sensor cannot be used outdoors due to exposure to rain or due to condensation at a high humid place. This sensor cannot be used with a guidepipe holder. The sensor must be installed in a vertical position. It can not be installed from below and in a horizontal position, either. 1-6. Hydrofluoric Acid-Resistant pH Sensor HF405 pH2 to 11 Measuring range: Upper limit of HF concentration: Max. 1000 ppm at pH3 to 4 Max. 10000 ppm at pH4 to 5 No limit at pH5 or greater Measuring temperature: 0 to 80°C (See Table 1 when using holder) Measuring pressure: Atmospheric pressure to 1.6 MPa (Temperature 25°C) Atmospheric pressure to 600 kPa (Temperature 100°C) (See Table 2 when using holder) Internal electrolyte: Solid polymer including KCI (Xerolyt) Temperature compensation sensor: None (Manual temperature compensation on the converter or transmitter) (Use adapter with temperature sensor SA405 for application where the temperature varies) Applicable holder: Flow-through holder (PH8HF), Submersion holder (PH8HS) (An optional adapter is needed, but not needed when using the adapter with temperature sensor SA405) Wetted part materials: ; Glass. silicon rubber or Daielperfrow Body rubber Adapter ; Stainless steel (316 SS), polypropylene or rigid polyvinyl chloride

This sensor cannot be used outdoors, even when using with a holder, this sensor cannot be used outdoors due to exposure to rain or due to condensation at a high humid place.

This sensor cannot be used with a guidepipe holder.

The sensor must be installed in a vertical position. It can not be installed from below and in a horizontal position, either.

1-7. Adapter with Temperature Sensor (SA405)

Applicable sensors: HA405, DPA405, HF405 Temperature sensor: Pt1000

Wetted part materials :

Stainless steel (316 SS) (Temperature sensor)- PEEK (Adapter), titanium, Hastelloy C

Applicable holder:

Flow-through holder (PH8HF), Submersion holder (PH8HS)

(Note 1): Use O-ring covered by Teflon (K9148MR) when using a special holder for electrolytic processes.

(Note 2): Use special type terminal box "WTB10-PH2" for pin terminal of PH202 or FLXA21,use "WTB10-PH6" for M4 ring terminal of FLXA21. Use special type M3 ring terminal box of "WTB10-PH4" for 4-wire type converter "PH450G" and 2-wire type transmitter "PH202/TB".

1-8. pH Sensor for Small Culture Tanks DPAS405

- Measuring range: pH0 to 12 Measuring temperature: 0 to 100°C (Applicable for autoclave)
- Autoclave temperature: max. 130°C Measuring pressure:
- Atmospheric pressure to 250 kPa

Internal electrolyte: High-viscosity gel

Temperature compensation sensor: None

(Manual temperature compensation on the converter or transmitter)

Applicable holder: Silicon bush

(Note): Use silicon bush or socket (DIN Pg 13.5 female) for an insertion length of 120 mm and 200 mm.

Wetted part materials:

Body ; Glass

CAUTION ON USE:

This sensor cannot be used outdoors and with guide-pipe holder.

The sensor must be installed in a vertical position. It can not be installed from below and in a horizontal position, either.

2. ORP Sensor

2-1. Common Specifications

Measured object:

Oxidation-Reduction potential in aqueous solution Measurement principle: Metal electrode method Measuring range: -1500 to 1500 mV Measurement conditions: Process temperature: See Table 4

Process pressure: See Table 5

Table 4. Process Temperature Range

ORP Sensor	Holder Type *2	Holder Material *1	Cleaner	Adapter Material *1	Temperature (°C)
	Quide size		None		-5 to 50
	Guide-pipe	PP	None		-5 to 80
	Submersion,	PP	None, Provided		-5 to 80
OR8ERG	Flow-through	SS	None, Provided		-5 to 80
	Suspension	SS	None, Provided		-5 to 80
	Float	PP, SS	None		-5 to 50
	Cuido nino	PVC	None		-5 to 50
	Guide-pipe	PP	None	Not used	-5 to 80
		PP, SS	None		-5 to 100
		PP, 33	Provided		-5 to 80
OR8EFG		PP	None, Provided		-5 to 80
	Flow-through	gh SS	None		-5 to 105
		55	Provided		-5 to 80
	Suspension	SS	None, Provided		-5 to 80
	Float	PP, SS	None		-5 to 50
			None	PVC	0 to 50
	Submersion		NONE	PP, SS	0 to 100
	Submersion	FF, 33	Provided	PVC	0 to 50
			FIOVIDED	PP, SS	0 to 80
HA485		PP	None,	PVC	0 to 50
*3 DPA485		ГГ	Provided	PVC	0 to 80
*3				PVC	0 to 50
	Flow-through		None	PP	0 to 80
		SS		SS	0 to 100
			Provided	PP, SS	0 to 80
			TOVIDED	PVC	0 to 50

Note: PV:Rigid Polyvinyl, PP: Polypropylene, SS: Stainless Steel

*1 Stainless steel holder and Stainless steel adapter should be used when the pH value of the solution is pH3 or more acidic.

*2 For flow-through types, refer also to the solution temperature and pressure diagram of holders GS 12J05C02-00E.

*3 Only jet cleaning system can be used for HA485 or DPA485.

O-ring ; Silicon rubber or Daielperfrow

Table 5. Process Pressure Range

ORP Sensor Holder	OR8ERG	OR8EFG	HA485	DPA485 *2
Submersion	Atmospheric	pressure (Sub	mersion depth	: Max. 3 m)
Guide-pipe Suspension Float	Atmospheric (Submersion Max. 3 m)		Not used	
Flow-through	Atmospheric pressure to 50 kPa	General purpose Atmospheric pressure to 10 kPa Medium	Atmospheric pressure to 500 kPa	Atmospheric pressure to 250 kPa
		pressure Atmospheric pressure to 500 kPa		10 200 Ki u

*1: For flow-through types, refer also to the solution temperature and pressure diagram of Holder GS 12J05C02-E. Available measuring pressure decreases when the inner

*2: pressure of DPA405 decreases.

	fillable Type Sensor OR8ERG
	range: -1500 to 1500 mV
Measuring	temperature: -5 to 80°C
	(See Table 4 when using holder)
Measuring	pressure: Atmospheric pressure to 50 kPa (See Table 5 when using holder)
Wetted par	· · · · · · · · · · · · · · · · · · ·
Body;	
,	gold-epoxy resin, titanium, ceramics,
	fluorocarbon rubber
Cable:	
Cable,	sheath)
Weight [.]	Approx. 0.4 kg
troigin.	
2-3. KCI Fill	ing Type Sensor OR8EFG
Measuring	range: -1500 to 1500 mV
Measuring	temperature: -5 to 105°C
•	(-5 to 80°C when using guide-pipe holder)
	(See Table 4 when using holder)
Measuring	3
•	Atmospheric pressure to 10 kPa
	(General purpose or big volume tank 500 mL)
	(See Table 5 when using holder)
	Atmospheric pressure to 500 kPa
	(Medium pressure)
	(See Table 5 when using holder)
Matte due em	t meteriole:

Wetted part materials:

- ; Ryton (PPS resin), platinum-glass or Body gold-epoxy resin, titanium or Hastelloy C, ceramics, fluorocarbon rubber ; Chlorinated polyethylene rubber (Cable Cable
- sheath) KCI tube ; Heat-resistant soft PVC (General
- purpose), Polyethylene (Medium pressure) Weight:

Sensor Approx 0.4 kg

concor,	Approx. 6.1 kg
Tank;	Approx. 0.3 kg (General purpose),
	Approx. 1 kg ((Medium pressure)

2-4. Solid Electrolyte	ORP Sensor (Xerolyt) HA485
Measuring range:	-1500 to 1500 mV

Measuring range: 2 to 14 pH Process pH range:

- Measuring temperature: 0 to 110°C (See Table 4 when using holder)
- Measuring pressure: Atmospheric pressure to 1.6MPa
 - (Temperature 25°C)

Atmospheric pressure to 600kPa

(Temperature 100°C)

(See Table 5 when using holder)

Internal electrolyte: Solid polymer including KCI (Xerolyt). Applicable holder:

- Flow-through holder (PH8HF), Submersion holder (PH8HS) (An optional adapter is needed) Ultrasonic cleaning is not available.
- Only jet cleaning is available when cleaning is necessary.

Wetted part materials:

- Platinum-glass, silicon rubber Body; Adapter; Stainless steel (316 SS), polypropylene
- or rigid polyvinyl chloride
- CAUTION ON USE:

This sensor cannot be used outdoors, even when using with a holder, this sensor cannot be used outdoors due to exposure to rain or due to condensation at a high humid place.

This sensor cannot be used with a guidepipe holder.

The sensor must be installed in a vertical position. It can not be installed from below and in a horizontal position, either.

2-5. ORP Sensors for Chemical Processes DPA485

- Measuring range: -1500 to 1500 mV Measuring temperature: 0 to 100°C (See Table 4 when using holder) Measuring pressure: Atmospheric pressure to 250kPa (See Table 5 when using holder) Internal electrolyte: High-viscosity gel Applicable holder: Flow-through holder (PH8HF), Submersion holder (PH8HS) (An optional adapter is needed.) Use O-ring covered by Teflon (K9148MR) when using a special holder for electrolytic processes Wetted part materials: Body; Platinum-glass, silicon rubber
 - Stainless steel (316 SS), polypropylene, Adapter; rigid polyvinyl chloride, heat-resistant polyvinyl chloride or titanium
- CAUTION ON USE:

This sensor cannot be used outdoors, even when using with a holder, this sensor cannot be used outdoors due to exposure to rain or due to condensation at a high humid place. This sensor cannot be used with a guidepipe holder.

The sensor must be installed in a vertical position. It can not be installed from below and in a horizontal position, either.

2-6. ORP Sensor for Small Culture Tanks DPAS485 Measuring range: -1500 to 1500 mV Measuring temperature: 0 to 100°C (Applicable for autoclave) Autoclave temperature: max. 130°C Measuring pressure: Atmospheric pressure to 250 kPa Internal electrolyte: High-viscosity gel Applicable holder: Silicon bush (Note): Use silicon bush or socket (DIN Pg13.5 female) for an insertion length of 120 mm and 200 mm. Wetted part materials: Platinum-glass, silicon rubber Body: CAUTION ON USE: This sensor cannot be used outdoors and with guide-pipe holder.

The sensor must be installed in a vertical position. It can not be installed from below and in a horizontal position, either.

3. pH Measuring System for High Purity Water

Use a holder for high purity water when using pH sensor for high purity water.

3-1. pH Sensor for High Purity Water PH8EHP

Measuring temperature: 0 to 50°C Measuring pressure: Atmospheric pressure Temperature compensation sensor: Pt1000 Measuring conductivity: See Fig. 2 Measuring flow rate: See Fig. 2 Wetted part materials: Ryton (PPS resin), glass, titanium or Body; Hastelloy C, ceramics, fluorocarbon rubber Cable: Chlorinated polyethylene rubber (Cable sheath)

KCI tube ; Heat-resistant soft PVC

Weight: Sensor ; Approx. 0.4 kg

Tank ; Approx. 0.3 kg (General purpose)

3-2. Holder for High Purity Water PH8HH

Material: Acrylic resin, 316 SS, chloroprene rubber Process connections: Inlet ; Rc 1/4 or 1/4NPT (F) Outlet ; Rc 1/2 or 1/2NPT (F)

Mounting Method:

50A (2-inch) vertical or horizontal pipe mounting (specify mounting bracket) or wall mounting (mounting bracket supplied with holder) Weight: Body; Approx. 1.7 kg

Mounting Bracket; Approx. 0.7 kg

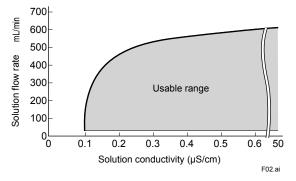


Fig.2 Solution flow rate and solution conductivity of sensor and holder for high purity water

4. Terminal Box

4-1. Terminal Box for General pH/ORP Sensors WTB10-PH1, -PH3, -PH5

Used when pH transmitter or converter is installed remotely from the pH or ORP sensor.

Ambient temperature: -10 to 50°C

Construction: JIS waterproof

Case material: Fiberglass reinforced polycarbonate resin Case color: Grayish green (Munsell 2.5GY5.0/1.0)

Electrical connections:

pH sensor side:

Ø21mm hole (With G1/2 plastic gland) pH Transmitter or Converter side; Ø13mm hole (With G1/2 plastic gland) With Cable (Maximum length 20 m)

Conduit adapter(optional)

4-2. Terminal Box for Special pH/ORP Sensors WTB10-PH2, -PH4, -PH6

Used when using pH transmitter or converter and adapter with temperature sensor SA405.

Ambient temperature : -10 to 50°C

Construction	: JIS waterproof
Case material	: Fiberglass reinforced
	polycarbonate resin
Case color	: Grayish green
	(Munsell 2.5GY5.0/1.0)

Electrical connections:

pH sensor side:

Ø21mm hole (With G1/2 plastic gland) pH Transmitter or Converter side:

Ø13mm hole (With G1/2 plastic gland) With Cable (Maximum length 20m) Conduit adapter(optional) Temperature sensor side: Pg7 plastic gland

5. Accessories (Purchased Separately)

See Model and Suffix Codes.

Compliance with the simple apparatus requirements

PH8EFP, PH8ERP and PH8EHP meet the simple apparatus requirements defined in the following standards.

Note: TIIS certified types cannot be connected. Use the sensors under the conditions of use required by the standards.

Applicable standards:

ANSI/ISA-60079-11 (2014) ANSI/ISA-60079-0 (2009) CAN/CSA-C22.2 NO. 60079-11:14 CAN/CSA-C22.2 NO. 60079-0:11 방호장치 의무안전인중 고시

GB 3836.4-2010

Conditions of use:

- Use in combination with an internally isolated transmitter, or use with, a transmitter in combination with isolated barrier. The FLXA21 is internally isolated.
- (2) Upper limit of the process temperature. The upper limit of process temperature is indicated below when the sensor is used in combination with a YOKOGAWA transmitter.

For FLXA21, model and suffix code below is available.

FLXA21-D-□-D-EA-P1-○-A-N-LA-N-NN □ can be any value. ○ must be NN or P1. Any option code is available.

For PH202S, model and suffix code below is available.

PH202S-o-E o must be C or U. There are no PH202S models that meet the Korean explosion proof standards. Any option code is available.

 Upper limit of process temperature on the PH8EFP

Transmitter used in combination	FLX	A21	PH202S		
Ambient temperature Ta Temperature class	40°C	60°C	40°C	60°C	
Т6	16	16	28	28	
T5	81	31	95 *1	43	
T4	105	66	105	78	
Т3	105	105	105	105	
T2	105	105	105	105	
T1	105	105	105	105	

*1: Care about upper limit 100°C of temperature class T5 should be taken.

Upper limit of process temperature on the PH8ERP

Transmitter used in combination	FLX	A21	PH202S		
Ambient temperature Ta Temperature class	40°C	60°C	40°C	60°C	
Т6	16	16	28	28	
T5	80	31	80	43	
T4	80	66	80	78	
Т3	80	80	80	80	
T2	80	80	80	80	
T1	80	80	80	80	

Upper limit of process temperature on the PH8EHP

Transmitter used in combination	FLX	A21	PH202S		
Ambient temperature Ta Temperature class	40°C	60°C	40°C	60°C	
Т6	16	16	28	28	
T5	50	31	50	43	
T4	50	50	50	50	
Т3	50	50	50	50	
T2	50	50	50	50	
T1	50	50	50	50	

Other warnings are provided in the user's manual.

MODEL AND SUFFIX CODES

1. pH Sensor

KCI Refillable Type pH Sensor

Model	Suffix Code			de	Option Code	Specifications	
PH8ERP							KCI Refillable Type pH Sensor
Cable	-0	3					3m
Length	-0	5					5m
	-07					7m	
	-10					10m	
	-15					15m	
	-20					20m	
Solution		-Т	'N				Titanium
Ground Tip		-H	С				Hastelloy C
-			-N	1			Always -N
pH Measuri	ng			-T			For PH200/PH400 *1
System				-E			For PH202/FLXA21 *2
				-F			For FLXA21 *6
				-B			For PH100 *3
	-G			For PH450G,PH202/TB *5			
Style					* A		Style A
Option			(O-r	ing	/PF	Daielperfrow *4

Mark band is shown by mark and fork terminals are used. *1:

*2: *3: Mark band is shown by numeral and pin terminals are used. The tag which indicated the color, the sign, and the number is

attached to the cable of a sensor. *4: Choose Daielperfrow when this is used in organic solvent, high

alkali or high temperature solution. *5: Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH3.

*6: Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.

• KCI Filling Type pH Sensor

Model	Suffix Code			e	Option Code	Specifications		
PH8EFP						KCI Filling Type pH Sensor		
Cable	-0	3						3m
Length	-0	5						5m
and KCI	-0	7						7m
Tube	-1	0						10m
Length	-1	5						15m
	-2	0						20m
Solution		-Т	'N					Titanium
Ground Tip		-ŀ	IC					Hastelloy C
KCI Reserve	;						For general purpose	
Tank							(250 mL solution inlet)	
*1			-1	Т2				For medium pressure *2
			-1	тз				Big volume tank
								(With 500 mL tank)
			-1	N 1	l			For maintenance (for TT1, TT3)
			-1	'N2	2			For maintenance (for TT2)
-				-N	1			Always -N
pH Measurir	ng S	Sys	ste	n	-1	-		For PH200/PH400 *3
					-Е			For PH202/FLXA21 *4
					-F			For FLXA21 *10
					-E	3		For PH100 *5
	-G				-0	3		For PH450G,PH202/TB *9
Style						*A		Style A
Option O-ring					D-r	ing	/PF	Daielperfrow *6
Specia	al g	las	ss e	elec	ctro	bde	/HA	Glass electrode for high alkali *7
	Š	pe	cia	ju	nct	ion	/TF	Teflon junction *8

2-inch pipe mounting bracket is supplied with TT1, TT2 and TT3. *1: Only a supply tube, but no KCl solution, is supplied with TN1 and TN2. Since a KCI solution is not supplied with TT2, arrange it from among accessories or auxiliary parts.

Prepare an air pressure regulator as shown in the diagram below when the medium-pressure reserve tank is used. To pH sensor, *2: Regulator, (to be prepared separately)

- *3: Mark band is shown by mark and fork terminals are used.
- *4: Mark band is shown by numeral and pin terminals are used.
- *5: The tag which indicated the color, the sign, and the number is attached to the cable of a sensor. Choose Daielperfrow when this is used in organic solvent, high *6:
- alkali or high temperature solution. Choose when using in high alkali solution.
- *7:
- *8: Choose when using in the heavily contaminated application.
- *9: Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH3.
- *10 Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.

Solid Electrolyte pH Sensor (Xerolyt) .

Model	Suffix Code	Option Code	Specifications
HA405			Solid electrolyte pH sensor
Insertion	-120		120 mm
Length			
Option	For	/01	1 m (Fork terminal)
	PH200/PH400	/03	3 m (Fork terminal)
	Cable Length *1	/05	5 m (Fork terminal)
		/10	10 m (Fork terminal)
		/15	15 m (Fork terminal)
		/20	20 m (Fork terminal)
	For	/01E	1 m (Pin terminal)
	PH202/FLXA21	/03E	3 m (Pin terminal)
	Cable Length *2	/05E	5 m (Pin terminal)
		/10E	10 m (Pin terminal)
		/15E	15 m (Pin terminal)
		/20E	20 m (Pin terminal)
	For FLXA21	/01F	1 m (M4 ring terminal)
	Cable Length *6	/03F	3 m (M4 ring terminal)
		/05F	5 m (M4 ring terminal)
		/10F	10 m (M4 ring terminal)
		/15F	15 m (M4 ring terminal)
		/20F	20 m (M4 ring terminal)
	For PH450G,	/01G	1 m (M3 ring terminal)
	PH202/TB	/03G	3 m (M3 ring terminal)
	Cable Length *5	/05G	5 m (M3 ring terminal)
		/10G	10 m (M3 ring terminal)
		/15G	15 m (M3 ring terminal)
		/20G	20 m (M3 ring terminal)
	Adapter *3	/S3	Stainless steel
		/PP	Polypropylene
		/PV	Rigid polyvinyl-chloride
	O-ring	/PF	Daielperfrow *4

Mark band is shown by mark and fork terminals are used.

*1: *2: *3: Mark band is shown by numeral and pin terminals are used. This is needed when using submersion type or flow-through type

holder. However this is not needed when using adapter with temperature

sensor (SA405). *4: Choose Daielperfrow when this is used in high alkali or high

temperature alkaline solution. Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH4. *5:

Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH6. *6:

• pH Sensors for Chemical Processes

Model	Suffix Code	Option Code	Specifications
DPA405			pH sensor for chemical process
Insertion	-120		120 mm
Length			
Option	For PH200/	/01	1 m (Fork terminal)
	PH400	/03	3 m (Fork terminal)
	Cable Length	/05	5 m (Fork terminal)
	*1	/10	10 m (Fork terminal)
		/15	15 m (Fork terminal)
		/20	20 m (Fork terminal)
	For PH202/	/01E	1 m (Pin terminal)
	FLXA21	/03E	3 m (Pin terminal)
	Cable Length	/05E	5 m (Pin terminal)
	*2	/10E	10 m (Pin terminal)
		/15E	15 m (Pin terminal)
		/20E	20 m (Pin terminal)
	For FLXA21	/01F	1 m (M4 ring terminal)
	Cable Length	/03F	3 m (M4 ring terminal)
	*6	/05F	5 m (M4 ring terminal)
		/10F	10 m (M4 ring terminal)
		/15F	15 m (M4 ring terminal)
		/20F	20 m (M4 ring terminal)
	For PH450G,	/01G	1 m (M3 ring terminal)
	PH202/TB	/03G	3 m (M3 ring terminal)
	Cable Length	/05G	5 m (M3 ring terminal)
	*5	/10G	10m (M3 ring terminal)
		/15G	15m (M3 ring terminal)
		/20G	20m (M3 ring terminal)
	Adapter *3	/S3	Stainless steel
		/PP	Polypropylene
		/PV	Rigid polyvinyl-chloride
		/HPV	Heat-resistant polyvinyl-chloride
		/TN	Titanium
	O-ring	/PF	Daielperfrow *4

*1: Mark band is shown by mark and fork terminals are used.

Mark band is shown by numeral and pin terminals are used.

*2: *3: This is needed when using submersion type or flow-through type holder. However this is not needed when using adapter with temperature sensor (SA405). Choose Daielperfrow when this is used in organic solvent, high

*4: alkali or high temperature alkaline solution.

*5: Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH4.

Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH6. *6:

Hydrofluoric Acid-Resistant pH Sensor .

Model	Suffix Code	Option Code	Specifications
HF405			Hydrofluoric acid-resistant pH sensor
Insertion	-120		120 mm
Length			
Option	For PH200/	/01	1 m (Fork terminal)
	PH400	/03	3 m (Fork terminal)
	Cable Length	/05	5 m (Fork terminal)
	*1	/10	10 m (Fork terminal)
		/15	15 m (Fork terminal)
		/20	20 m (Fork terminal)
	For PH202/	/01E	1 m (Pin terminal)
	FLXA21	/03E	3 m (Pin terminal)
	Cable Length	/05E	5 m (Pin terminal)
	*2	/10E	10 m (Pin terminal)
		/15E	15 m (Pin terminal)
		/20E	20 m (Pin terminal)
	For FLXA21	/01F	1 m (M4 ring terminal)
	Cable Length	/03F	3 m (M4 ring terminal)
	*6	/05F	5 m (M4 ring terminal)
		/10F	10 m (M4 ring terminal)
		/15F	15 m (M4 ring terminal)
		/20F	20 m (M4 ring terminal)
	For PH450G,	/01G	1 m (M3 ring terminal)
	PH202/TB	/03G	3 m (M3 ring terminal)
	Cable Length	/05G	5 m (M3 ring terminal)
	*5	/10G	10 m (M3 ring terminal)
		/15G	15 m (M3 ring terminal)
		/20G	20 m (M3 ring terminal)
	Adapter *3	/S3	Stainless steel
		/PP	Polypropylene
		/PV	Rigid polyvinyl-chloride
	O-ring	/PF	Daielperfrow *4

*1: *2:

Mark band is shown by mark and fork terminals are used. Mark band is shown by numeral and pin terminals are used. This is needed when using submersion type or flow-through *3:

type holder. However this is not needed when using adapter with temperature sensor (SA405). *4: Choose Daielperfrow when this is used in organic solvent, high

alkali or high temperature solution. *5:

Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH4. *6:

Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH6.

Adapter with Temperature Sensor (for pH Meter) •

Model	Suffix Code			Option Code	Specifications
SA405		••••			Adapter with temperature sensor
Measuring	-4	1			for PH200/PH400 *1
System	-Е	-E			for PH202/FLXA21 *2
	-F	-F			for FLXA21 *4
	-0	-G			for PH450G,PH202/TB *3
Material of Tem	p.	-ŀ	IC		Hastelloy C / Hastelloy C
Sensor Cove	r/	-9	33		Stainless steel / PEEK
Adapter		-1	'N		Titanium / Titanium
Cable Length	1		-01		1 m
			-03		3 m
			-05		5 m
			-10		10 m
			-15		15 m
			-20		20 m

Mark band is shown by mark and fork terminals are used.

*1: *2: *3: Mark band is shown by numeral and pin terminals are used.

Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH4. Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH6. *4:

(Note) Use O-ring covered by Teflon (K9148MR) when using a special holder for electrolytic processes.

pH Sensor for Small Culture Tanks •

Model	Suffix Code	Option Code	Specifications
DPAS405			pH sensor for
			small culture tanks
Insertion	-120		120 mm
Length	-200		200 mm
*1	-325		325 mm
Option	For PH200/	/03	3 m
	PH400	/05	5 m
	Cable Length	/10	10 m
	*2	/15	15 m
		/20	20 m
	For PH202	/03E	3 m
	Cable Length	/05E	5 m
	*3	/10E	10 m
		/15E	15 m
		/20E	20 m
	O-ring	/PF	Daielperfrow *4

Use silicon bush or socket (DIN Pg13.5 female) for an insertion length of 120mm and 200mm. *1:

Mark band is shown by mark and fork terminals are used.

Mark band is shown by numeral and pin terminals are used.

*2: *3: *4: Choose Daielperfrow when this is used in organic solvent, high alkali or high temperature solution.

2. ORP Sensor

KCI Refillable Type ORP Sensor •

Model		Suffix Code		Option Code	Specifications		
OR8ERG						KCI Refillable Type ORP Sensor	
Electrode	-A	U				Gold	
	-P	т			·····	Platinum	
Cable Lengt	h	-0	3			3m	
		-05		-05			5m
	-07		-07			7m	
	-10			10m			
		-1	5			15m	
		-2	0		·····	20m	
Measuring			-N			For OR200/OR400 *1	
System	em		-E			For PH202/FLXA21 *2	
		-F				For FLXA21 *5	
		-B				For OR100 *3	
		-G		i		For PH450G,PH202/TB *4	
Style				*A		Style A	

*1: Mark band is shown by mark and fork terminals are used.

Mark band is shown by numeral and pin terminals are used. *2:

*3: The tag which indicated the color, the sign, and the number is attached to the cable of a sensor.

*4: Mark band is shown by numeral and M3 ring terminals are used.

When terminal box is used, select WTB10-PH3. Mark band is shown by numeral and M4 ring terminals are used. *5: When terminal box is used, select WTB10-PH5.

Model	Suffix Code		Option Code	Specifications		
OR8EFG						KCI Filling Type ORP Sensor
Electrode	-A	U				Gold
	-P	т				Platinum
Cable Length		-03				3 m
and KCI Tube	-05					5 m
Length		-07 -10 -15				7 m
						10 m
						15 m
		-20				20 m
KCI Reserve		т-	т1			For general purpose
Tank *1						(250 mL solution inlet)
		-т	Т2			For medium pressure *2
		-т	'N1			For maintenance (for TT1)
		-т	'N2			For maintenance (for TT2)
Measuring Sys	ster	n	-N			For OR200/OR400 *3
			-E			For PH202/FLXA21 *4
-F -B					For FLXA21 *7	
			;		For OR100 *5	
			-G	;		For PH450G.PH202/TB *6
Style				*A	······	Style A

KCI Filling Type ORP Sensor •

- *1: A 50A (2-inch) pipe mounting bracket is supplied with TT1 and TT2. Only a supply tube, but no KCI solution, is supplied with TN1 and TN2. Since a KCI solution is not supplied with TT2, arrange it from among accessories or auxiliary parts.
- Prepare an air pressure regulator as shown in the diagram below *2: when the medium-pressure reserve tank is used.

- *3: *4: Mark band is shown by mark and fork terminals are used.
- Mark band is shown by numeral and pin terminals are used.
- *5: The tag which indicated the color, the sign, and the number is attached to the cable of a sensor. Mark band is shown by numeral and M3 ring terminals are used.
- *6: When terminal box is used, select WTB10-PH3.
- *7: Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.

Solid Electrolyte ORP Sensor (Xerolyt)

Model	Suffix Code	Option Code	Specifications
HA485			Solid electrolyte ORP sensor
Insertion Length	-120		120 mm
Option	For OR200/	/01	1 m (Fork terminal)
	OR400	/03	3 m (Fork terminal)
	Cable Length	/05	5 m (Fork terminal)
	*1	/10	10 m (Fork terminal)
		/15	15 m (Fork terminal)
		/20	20 m (Fork terminal)
	For PH202/	/01E	1 m (Pin terminal)
	FLXA21	/03E	3 m (Pin terminal)
	Cable Length	/05E	5 m (Pin terminal)
	*2	/10E	10 m (Pin terminal)
		/15E	15 m (Pin terminal)
		/20E	20 m (Pin terminal)
	For FLXA21	/01F	1 m (M4 ring terminal)
	Cable Length	/03F	3 m (M4 ring terminal)
	*5	/05F	5 m (M4 ring terminal)
		/10F	10 m (M4 ring terminal)
		/15F	15 m (M4 ring terminal)
		/20F	20 m (M4 ring terminal)
	For PH450G,	/01G	1 m (M3 ring terminal)
	PH202/TB	/03G	3 m (M3 ring terminal)
	Cable Length	/05G	5 m (M3 ring terminal)
	*4	/10G	10 m (M3 ring terminal)
		/15G	15 m (M3 ring terminal)
		/20G	20 m (M3 ring terminal)
	Adapter *3	/S3	Stainless steel
		/PP	Polypropylene
		/PV	Rigid polyvinyl-chloride

*1: Mark band is shown by mark and fork terminals are used.

*2: Mark band is shown by numeral and pin terminals are used.

*3: This is needed when using submersion type or flow-through type holder.

*4: Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH3.

*5: Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.

ORP Sensors for Chemical Processes •

Model	Suffix Code	Option Code	Specifications
DPA485			ORP sensor for chemical prpcess
Insertion	-120		120 mm
Length			
Option	For OR200/	/01	1 m (Fork terminal)
	OR400	/03	3 m (Fork terminal)
	Cable Length	/05	5 m (Fork terminal)
	*1	/10	10 m (Fork terminal)
		/15	15 m (Fork terminal)
		/20	20 m (Fork terminal)
	For PH202/	/01E	1 m (Pin terminal)
	FLXA21	/03E	3 m (Pin terminal)
	Cable Length		5 m (Pin terminal)
	*2	/10E	10 m (Pin terminal)
		/15E	15 m (Pin terminal)
		/20E	20 m (Pin terminal)
	For FLXA21	/01F	1 m (M4 ring terminal)
	Cable Length	/03F	3 m (M4 ring terminal)
	*5	/05F	5 m (M4 ring terminal)
		/10F	10 m (M4 ring terminal)
		/15F	15 m (M4 ring terminal)
		/20F	20 m (M4 ring terminal)
	For PH450G,	/01G	1 m (M3 ring terminal)
	PH202/TB	/03G	3 m (M3 ring terminal)
	Cable Length	/05G	5 m (M3 ring terminal)
	*4	/10G	10 m (M3 ring terminal)
		/15G	15 m (M3 ring terminal)
		/20G	20 m (M3 ring terminal)
	Adapter *3	/S3	Stainless steel
		/PP	Polypropylene
		/PV	Rigid polyvinyl-chloride
		/HPV	Heat-resistant polyvinyl-chloride
		/TN	Titanium

*1: Mark band is shown by mark and fork terminals are used.

*2: *3: Mark band is shown by numeral and pin terminals are used.

This is needed when using submersion type or flow-through type holder

*4: Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH3.

*5: Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5.

• **ORP Sensor for Small Culture Tanks**

Model	Suffix Code	Option Code	Specifications
DPAS485			ORP sensor for chemical prpcess
Insertion	-120		120 mm
Length	-200		200 mm
*1	-325		325 mm
Option	For OR200/	/03	3 m
	OR400	/05	5 m
	Cable Length	/10	10 m
	*2	/15	15 m
		/20	20 m
	For PH202	/03E	3 m
	Cable Length	/05E	5 m
	*3	/10E	10 m
		/15E	15 m
		/20E	20 m

*1: Use silicon bush or socket (DIN Pg13.5 female) for an insertion length of 120 mm and 200 mm.

Mark band is shown by mark and fork terminals are used. *2: *3:

Mark band is shown by numeral and pin terminals are used.

3. pH Measuring System for High Purity Water

pH Sensor for High Purity Water •

Model	Suffix Code				Option Code	Specifications		
PH8EHP								pH sensor for high purity water
Cable	-0	3						3 m
Length	-0	5						5 m
	-0	7						7 m
	-1	0						10 m
	-1	5						15 m
	-2	0						20 m
Solution Ground Tip	-TN					Titanium		
KCI Reserve	Tan	ık	-т	Т1				For general purpose
*1								(250 mL solution inlet)
	-TT3		тз				Big volume tank	
								(With 500 mL tank)
			-T	N1				For maintenance (for TT1)
-				-N				Always -N
Measuring System -H			-H			For PH200/PH400 *2		
				-E			For PH202/FLXA21 *3	
					-F			For FLXA21 *5
-G					For PH450G,PH202/TB *4			
Style					Τ	*A		Style A

Only a KCI supply tube is supplied with TN1. KCI solution is *1: supplied with TT1 and TT3.

*2: Mark band is shown by mark and fork terminals are used.

*3: *4: Mark band is shown by numeral and pin terminals are used. Mark band is shown by numeral and M3 ring terminals are used. When terminal box is used, select WTB10-PH3.

Mark band is shown by numeral and M4 ring terminals are used. When terminal box is used, select WTB10-PH5. *5:

pH Holder for High Purity Water •

Model	Suffix Code		Option Code	Specifications	
РН8НН				pH Holder for High Purity Water, wall-mount type	
Connection	-JPT			Rc1/4 (Inlet), Rc1/2 (Outlet)	
ports	-NPT			1/4NPT (Inlet), 1/2NPT (Outlet)	
-	-н			Always -H	
Style			*A		Style A
Option	Mounting Bracket		/P	Pipe mounting bracket	

4. Terminal Box

Terminal Box •

Model	Su	ffix Code	Option Code	Specifications
WTB10				Terminal box
Combined	-PH1			For PH202, FLXA21 (General
System				sensor of pin terminals)
	-PH2			For PH202, FLXA21 (Special
				sensor, of pin terminals) *1
	-PH3			For PH450G, PH202/TB (General
				sensor) *4
	-PH4			For PH450G, PH202/TB
				(Special sensor) *1 *4
	-PH5	1		For FLXA21 (General sensor) *5
	-PH6	i		For FLXA21 (Special sensor) *1 *5
-	-N	IN		Always -H
Cable Length	ı (*2)	-00		0 m *3
		-05		5 m
		-10		10 m
	-15			15 m
Option	Mounting		/P	Pipe mounting bracket
		Bracket	/W	Wall mounting bracket
Conduit Adapter			/AWTB	G1/2
			/ANSI	1/2NPT

Use -PH2, -PH4, -PH6 of combined system when using adapter with temperature sensor (SA405) is used. For WTB10 of combined system, maximum cable length including *1:

*2: sensor cable length should be 20 m.

*3: *4: The dedicated extension cable should be used.

M3 screw terminals and cable with M3 ring terminals are used.

*5: M4 screw terminals and cable with M4 ring terminals are used.

5. Accessories

Accessories for pH Meter •

Model	Suffix Code	Option Code	Specifications
PH8AX			Accessories for pH meter *1
Calibration	-L		Two bottles, each containing
Reagents			250 mL solution (pH7 and pH4)
	-P		24 bags, each bag containing
			powder for 500 mL solution
			(pH7 X 12 bags and pH4 X
			12 bags) and two 500 mL
			polyethylene bottles.
Style	*A		Style A
Option *2		/STD	Sensor stand (with mounting
			bracket for 50A 2-inch pipe)
		/KCLL	KCI solution (one 250 mL
			polyethylene bottle)
		/KCLP	KCI powder (three bags,
			250 mL solution each)
		/TMP	Thermometer (0 to 100°C)

*1: Including the following: Two 200 mL polyethylene cups One cleaning bottle

Either /KCLL or /KCLP is required for PH8EFP- \Box - \Box -TT2. *2:

• Accessories for ORP Meter

Model	Suffix Code	Option Code	Specifications
OR8AX			Accessories for ORP meter *1
Style	*A		Style A
Option *2		/STD /KCLL	Sensor stand (with mounting bracket for 50A 2-inch pipe) KCI solution (one 250 mL polyethylene bottle)
		/KCLP /TMP	KCI powder (three bags, 250 mL solution each) Thermometer (0 to 100°C)

Including the following: *1: Two 200 mL polyethylene cups One cleaning bottle One pack of quinhydrone reagent powder (three bags, 250 mL solution each)

One 250 mL polyethylene bottle Either /KCLL or /KCLP is required for PH8EFP-□-□-TT2. *2.

6. Spare Parts

Spare Parts for pH Meter •

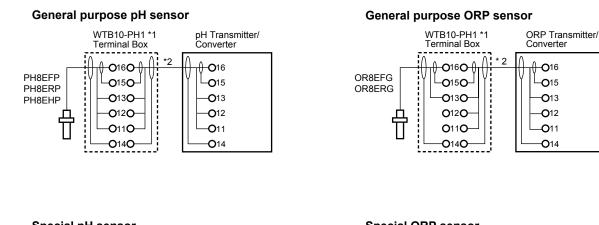
Par	Part Name		Remarks
Glass	General	K9142TN	One for PH8ERP, PH8EFP, PH8EHP
electrode	purpose	K9319NA	One for PH8ERP/PF, PH8EFP/PF
	Certified	K9142TP	One for PF8EFP
	version	K9319NB	One for PH8EFP/PF
	High alkali	K9142TU	One for PH8EFP/HA
		K9319NC	One for PH8EFP/HA, /PF
Junction	General	K9142TH	One for PH8ERP, PH8EFP
	purpose	K9319QA	One for PH8ERP, PH8EFP/PF
	High purity water	K9142TK	One for PH8EHP
	Teflon	K9142HW	One for PH8EFP/TF
		K9319QB	One for PH8EFP/TF/PF
Cable	1 m	K9148XA	for HA405,DPA405,HF405
with	3 m	K9148XB	for HA405,DPA405,HF405
M4 ring terminal	5 m	K9148XC	for HA405, DPA405, HF405
for	10 m	K9148XD	for HA405, DPA405, HF405
FLXA21	15 m	K9148XE	for HA405,DPA405,HF405
	20 m	K9148XF	for HA405,DPA405,HF405

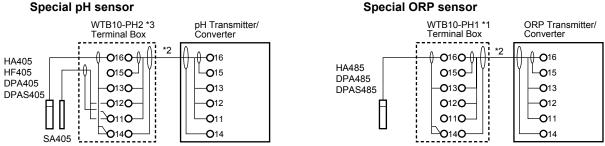
Spare Parts for pH Meter

Part	Name	Part Number	Remarks
Cable	1 m	K9148WA	for HA405,DPA405,HF405
with M3 ring for	3 m	K9148WB	for HA405,DPA405,HF405
PH202/	5 m	K9148WC	for HA405,DPA405,HF405
ТВ	10 m	K9148WD	for HA405,DPA405,HF405
PH450G	15 m	K9148WE	for HA405,DPA405,HF405
*1	20 m	K9148WF	for HA405,DPA405,HF405
Cable	1 m	K9148KE	for HA405,DPA405,HF405
with fork	3 m	K9148KF	for HA405,DPA405,HF405
terminal for	5 m	K9148KG	for HA405,DPA405,HF405
for PH200/	10 m	K9148KH	for HA405, DPA405, HF405
PH400	15 m	K9148KJ	for HA405,DPA405,HF405
	20 m	K9148KK	for HA405,DPA405,HF405
	3 m	K9148RB	for DPAS405
	5 m	K9148RC	for DPAS405
	10 m	K9148RD	for DPAS405
	15 m	K9148RE	for DPAS405
	20 m	K9148RF	for DPAS405
Cable	1 m	K9148VA	for HA405,DPA405,HF405
with pin	3 m	K9148VB	for HA405,DPA405,HF405
terminal	5 m	K9148VC	for HA405, DPA405, HF405
for			for HA405,DPA405,HF405
PH202/ FLXA21	10 m	K9148VD	, ,
	15 m	K9148VE	for HA405,DPA405,HF405
	20 m	K9148VF	for HA405,DPA405,HF405
	3 m	K9148VH	for DPAS405
	5 m	K9148VJ	for DPAS405
	10 m	K9148VK	for DPAS405
	15 m	K9148VL	for DPAS405
	20 m	K9148VM	for DPAS405
Adapter	316 SS	K9148NA	for HA405, HA406, DPA405, DPA406, HF405
	Polypropylene	K9148NB	for HA405, HA406, DPA405, DPA406, HF405
	Rigid polyvinyl- chloride	K9148NC	for HA405, HA406, DPA405, DPA406, HF405
	Heat- resistant polyvinyl- chloride	K9148ND	for DPA405, DPA406
KCl soluti (3.3 mol/L		K9084LP	Six 250 mL polyethylene bottles
	Buffer solution for calibration (pH4)		Six 250 mL polyethylene bottles
	Buffer solution for calibration (pH7)		Six 250 mL polyethylene bottles
Buffer solution for calibration (pH9)		K9084LN	Six 250 mL polyethylene bottles
Powder for buffer solution (pH4)		K9020XA	12 bags,each for preparation of 500 ml
Powder for buffer solution (pH7)		K9020XB	12 bags, each for preparation of 500 m
Powder for solution (p		K9020XC	12 bags, each for preparation of 500 m
KCI powd (for PH8EI	er FP, PH8EHP)	K9020XU	8 bags, each for preparation of 250 mL
KCI powd (for PH8E		K9142UT	2 bags, 1 bottle of 3.3 mol/L KCl, 1 syringe

*1 Applicable terminal box are WTB10-PH3 or WTB10-PH4.

(Note): The pH value of the calibrating buffer solution may vary depending on storage conditions. Prepare a new solution from powder for accurate instrument

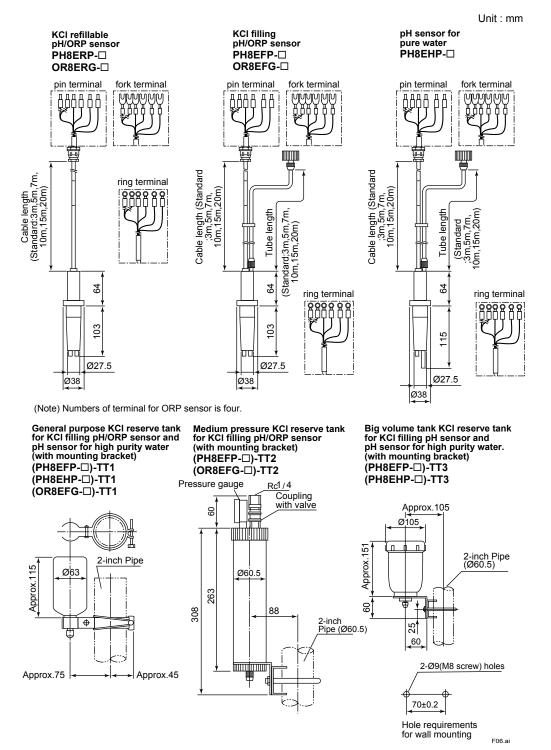

calibration


Spare Parts for ORP Meter

Part Name		Part Number	Remarks
Sensor	Platinum	K9142TS	One for OR8ERG,OR8EFG
	Gold	K9142TT	One for OR8ERG, OR8EFG
Junction		K9142TH	One for OR8ERG,OR8EFG
Cable	1 m	K9148KE	for HA485,DPA485
with fork terminal	3 m	K9148KF	for HA485,DPA485
for	5 m	K9148KG	for HA485,DPA485
OR200/	10 m	K9148KH	for HA485,DPA485
OR400	15 m	K9148KJ	for HA485,DPA485
	20 m	K9148KK	for HA485,DPA485
	3 m	K9148RB	for DPAS485
	5 m	K9148RC	for DPAS485
	10 m	K9148RD	for DPAS485
	15 m	K9148RE	for DPAS485
	20 m	K9148RF	for DPAS485
Adapter	SS	K9148NA	for HA485,DPA485
	PP	K9148NB	for HA485,DPA485
	PVC	K9148NC	for HA485,DPA485
	HPVC	K9148ND	for DPA485
	Titanium	K9148NE	for DPA485
		Part	1
Par	Part Name		Remarks

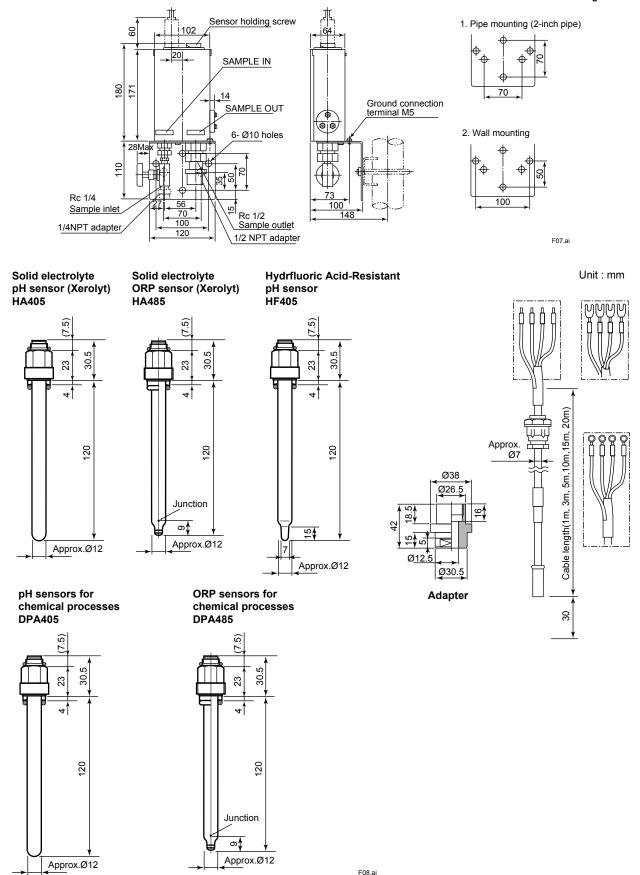
Part Name		Part Number	Remarks
Cable	1 m	K9148XA	for HA485,DPA485
with	3 m	K9148XB	for HA485,DPA485
M4 ring	5 m	K9148XC	for HA485,DPA485
terminal	10 m	K9148XD	for HA485,DPA485
for FLXA21	15 m	K9148XE	for HA485,DPA485
	20 m	K9148XF	for HA485,DPA485
Cable	1 m	K9148WA	for HA485,DPA485
with	3 m	K9148WB	for HA485,DPA485
M3 ring terminal	5 m	K9148WC	for HA485,DPA485
for	10 m	K9148WD	for HA485,DPA485
PH202/	15 m	K9148WE	for HA485,DPA485
TB PH450G	20 m	K9148WF	for HA485,DPA485
	1 m	K9148VA	for HA485,DPA485
	3 m	K9148VB	for HA485,DPA485
	5 m	K9148VC	for HA485,DPA485
Cable	10 m	K9148VD	for HA485,DPA485
with pin	15 m	K9148VE	for HA485,DPA485
terminal for	20 m	K9148VF	for HA485,DPA485
PH202/	3 m	K9148VH	for DPAS485
FLXA21	5 m	K9148VJ	for DPAS485
	10 m	K9148VK	for DPAS485
	15 m	K9148VL	for DPAS485
	20 m	K9148VM	for DPAS485
KCI solutio	KCl solution (3.3 mol/L)		Six 250 mL polyethylene bottles
KCI powder (for OR8EFG)		K9020XU	8 bags, each for preparation of 250 mL
	KCI powder (for OR8ERG)		2 bags 1 bottle of 3.3 mol/L KCI, 1 syringe
Reagent	Quinhydrone	K9024EC	3 bags, each for preparation of 250 mL
for check	Iron	K9024ED	3 bags, each for preparation of 250 mL

WIRING DIAGRAMS

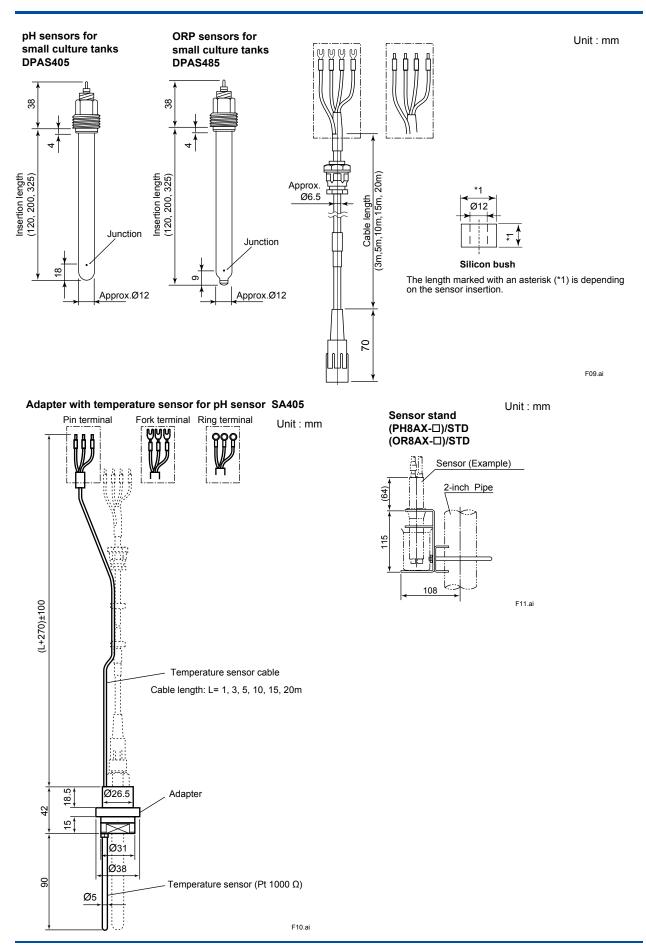

*1 : Terminal box is used only where pH/ORP transmitter is installed remotely from pH or ORP sensor (normally not needed). When combined PH450G, PH202/TB, use WTB10-PH3 terminal box. When combined by M4 ring terminals with FLXA21, use WTB10-PH5 terminal box.

*2 : This cable is specified in the option code for the terminal box. *3 : Should be used when using combined PH202G, FLXA21 and SA405. When combined PH450G, PH202/TB and SA405, use WTB10-PH4 terminal box.

When combined by M4 ring terminals with FLXA21 and SA405, use WTB10-PH6 terminal box.

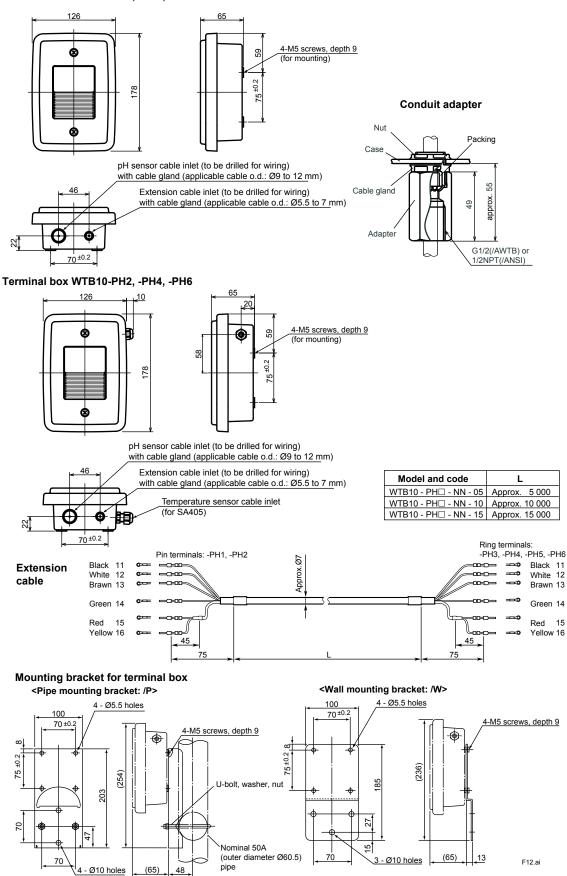

F05.ai

DIMENSIONS


Holder for high purity water PH8HH

All Rights Reserved. Copyright © 2000, Yokogawa Electric Corporation

GS 12B07B02-E 7th Edition May 27.2015-00



All Rights Reserved. Copyright © 2000, Yokogawa Electric Corporation

GS 12B07B02-E 7th Edition May 27.2015-00

Terminal box WTB10-PH1, -PH3, -PH5

Unit : mm

■ SELECTION CRITERIA FOR pH/ORP SENSOR AND HOLDER

<General Overall Criteria>

- (1) When any of the two conditions listed below are applicable, select a KCI filling type pH sensor and either the submersion or flow-through type holder.
 - The solution is out of the range 2 < pH < 12.
- The solution contains organic or oil in the order of a few percent.
- (2) When any of the two conditions listed below are applicable, consult our salesperson.
- Strong oxidizing solutions such as aqua regia, chromic acid , hypochloric acid, perchloric acid.
- The solution contains corrosive gases (ammonia, chlorine, hydrogen sulfide).

<Individual Criteria>

 \bigcirc : Can be used, \triangle :Shortens useful life, \times :Cannot be used

		Concentration	pH *1	Но	Holder					
	Chemical	W/V (%)	(25°C)	Flow-through, Submersion	Guide-pipe					
	Sulfuric acid	0.5	1.0	0	×					
		0.05	2.0	0	0					
	Hydrochloric acid	0.4	1.0	0	×					
ä		0.04	2.0	0	0					
a u	Nitric acid	0.6	1.0	0	×					
ani		0.06	2.0	0	0					
Inorganic acid	Phosphoric acid	1.0	1.5	0	\bigtriangleup					
Ĕ	Boric acid	0.6	5.0	0	0					
	Carbonic acid	0.6	3.6	0	\bigtriangleup					
	Chromic acid	1.2	0.8	0	×					
	Sulfurous acid	0.8	1.4	0	\bigtriangleup					
	Acetic acid	0.6	2.8	0	0					
Organic acid	Formic acid	0.5	2.3	0	0					
c a	Oxalic acid	0.9	1.0	0	0					
ani	Lactic acid	0.9	2.4	0	0					
Org	Phenol acid	0.9	5.4	0	Δ					
	Monochloroacetic acid	0.9	1.8	0	×					
=	Calcium hydroxide	0.2	12.4	0	0					
Alkali	Potassium hydroxide	0.5	12.7	0	\bigtriangleup					
∣◄	Sodium hydroxide	0.4	12.9	0	Δ					
	Ammonium chloride	5		0	0					
lts	Aluminous water	5		0	0					
x	Zinc chloride	5		0	0					
Acid salts	Ferric chloride	5		0	0					
	Ferric nitrate	5	1.3	0	Δ					
<u>ں</u> ہ	Sodium sulfite	5		0	0					
Basic salts	Sodium carbonate	5	11.8	0	0					
l te o	Sodium phosphate	5		0	\bigtriangleup					
Ś	Potassium chloride	5		0	0					
salt	Sodium sulfate	5		0	0					
al	Calcium chlorine	5		0	0					
Neutral salts	Sodium nitrate	5	8.2	0	×					
Ž	Aluminum chloride	5		0	0					
5	Hydrogen peroxide	1		0	0					
Oxdizing agents	Sodium hypochlorite solution	1	12.5	0	\triangle					
age	Chlorinated lime	1		0	\triangle					
0 "	Potassium bichromate	5	4.5	0	0					
ts c.	Alcohol	10		0	Δ					
Organic solvents	Organic solvent or oil			0	×					
۵ ۾	(excluding alcohol)									

*1: pH values in table are calculated from dissociation constant (including measured value).

Table of Corrosion-Resistant Materials (The data should be used for reference only)

Note: This table shows corrosion resistance for each single substance alone. If a sample contains two or more substances, then the corrosion resistance may differ from that given in this table.

0:0 2:N	Excellent Good Not so good Jnusable		Holde				-	Jltraso	nic tra	nsduc	er mat			Seal O-ring material		nsor b materia]
			ypropy			316 SS			stelloy			itaniur		Viton		Rytor		Remarks
	Sulfurous acid	Concen 100	<u>it'n Temp</u> 20 90	Judge O O	Concen 6	<u>ťn Temp</u> 30	Judge	Concent 6	<u>t'n Temp</u> 30	Judge	Concent 6	t'n Temp 30	Judge		Concer	nt'n Temp —	Judge]
	Hydrochloric acid	5 5	20 80	0	5	30	×	5	30	0	5 5	30 b	© ×		5 37 37	30 60 90	©	
σ	Chromic acid	20 20	20 40	∆ ×	10	b	0	20	30	0	10	b	0		20	20	0	
Inorganic acid	Hypochlorous Acid	10 10	20 40	0	14	30	×	15	43	O	20	40	O	Strong acid ()	5	20 40	O ×	
gan	Hydrobromic acid	10	-			-			-		40	30	O	Weak acid ()		-	~	
Inor	Nitric acid	10 10	20 80	0	10	30	0	10	30	0	10	100	0		5 10	20 60	0 ×	
	Hydroiodic acid	57 57	20 70	0	57	25	×		-		57	30	0			-		
	Sulfuric acid	3 3	20 100	0	6 5	30 100	© ×	5 5	30 70	0	5 5	30 100	© ×		90 30	20 90	0 0	
	Phosphoric acid	30 30	60 100	© △	15 5	30 b	0	5 5	30 b	0	5 5	30 60	0 0		85	90	0	
	Ammonia water	15 15	80 100	© 0	10 28	b 65	0	10 20	b 65	0 0	10 20	b 65	0 0		15	30	O	
	Potassium hydroxide		-		10 25	b b	0 0	10 25	b b	0 0	10 25	b b	0 0		10 10	20 90	© ∆	
Alkali	Sodium hydroxide	20 20	80 100	0	20 20	30 b	0	20 20	30 b	0	20 20	30 b	0 0	Strong alkali ×	10 10	20 90	© △	
A	Sodium hydroxide, Sodium hydroxide9 to 11% +Sodium chloride 15%		100	O		-			-			93	0	Weak alkali ∆		90	0	
	Potassium carbonate		-		5 35	b b	0 0	5 35	b b	0	5 35	b b	0 0		5 35	b b	0 0	
	Sodium carbonate	sat.	100	0	25	b	0	25	b	0	25	b	0		25	90	O	
	Zinc chloride Aluminum chloride		-		20 25 25	b 25 25		20	b _	0	20 10 25	b b b	0 0 ×	-		-		
	Ammonium chloride	35	40	0	25	b	Δ	25	b	0	25	b	Ô	-	25	90	O	
	Potassium chloride	sat.	60	O	sat.	60	O	sat.	60	O	sat.	60	O	-	20	90	O	
Chlorides	Calcium chloride	sat. sat.	80 100	0 0	25	b	0	25	b	0	25	b	0	-	25	90	0	
Chic	Ferric chloride	20 20	40 60	0 0	30	b	×	30	b	×	30	b	0	-	20	60	0	
	Sodium chloride, 20% + Saturated Cl2 (Electrolysis solution)		100	0		90	×		90	×		90	0	_		20		
	Seawater, Magnesium chloride	sat.	24 80	0 0	42	24 b	\triangle	42	b	Ø	40	24 b	00	-		24 80	0 0	
tes	Ammonium sulfate	5	60	0	20 sat.	b 30	0	20 sat.	b 30	0	20 sat.	b 30	0 0	-	10	90	0	Polypropylene may sometimes be eroded by ammonium sulfate crystals
Sulfates	Potassium sulfate		_		10	b	0	10		0	10	b	0	_	10	90	0	
0	Sodium sulfate		Corrsio		20	b	0	20	b	0	20	b	0	-	10	90	0	1
Nitrates	Ammonium nitrate	(sistance good fo sual sal	r	20	b	Ø	20	b	O	20	b	0	-	10	90	0	
Ż	Sodium nitrate				50	b	O		-		50	b	O	-		-		
	Sodium sulfite	4			20	b	0		-		20	b	0	-		-		ļ
	Hydrogen peroxide	20	00		10	30	0		-		10	30	0	-	10	30	0	
Others	Sodium sulfide	30 20	90 80	0	2	60-90	×	2	60-90		15	30	0	-	5	90	0	
0	Potassium bichromate	60	80	0	10 10	b	0	10		0	10 10	b	0	-	10	- 90	0	
	Sodium sulfide Sodium bisulfate	00	- 00	0	10	b					10	b	0	-		90	O	
	Wet chlorine gas		20 40	0 		30	×		30	Δ		30	0	_		20	×	
ş	Sea water + Saturated Cl2		60	×		95	×		95	Δ		95	0	_		-		
Gases	Bromine gas		-			-			30	0		30	O	-		30	×	
-	Hydrogen sulfide		-			20	O		-			20	0	-		-		
	Sulfurous acid gas	1	80	0	1	-			-			30-90	O	-	1	80	O	

(Note): "b" refers to the boiling point.

		Holde	er mate				Jitraso Senso	nic tra or solu						al O-ri nateria			isor be nateria		
		ypropy			316 SS			stelloy			taniur			Viton			Ryton		Remarks
Acetaldehyde	Concer	11'n Temp 20	p Judge	100	in Temp 30	Judge	Concent	ťn Temp —	Judge	Concent	n Temp	Judge	Concent	n Temp	Judge	Concent 100	n Temp 20	Judge	
	100	20	0	50	25	0										100	20		
Acetone	100	20	0	100	110	Õ		-			-		100	25	×	100	b	0	
	100	20	0	100	110														
Aniline	100	70	Õ	100	25	O		-			-			-		100	90	0	
	100	100	Δ			-													
Ether	100	20	Δ	100	25	0		-			-			-		100	20	0	
	100	70	0	100	25	0		_			_			_			_		
Ethylene glycol	100	100	\odot					-			-			-			-		
Ethyl alcohol	96	70	O	100	b	O		_			-			-		100	90	O	
-																			
Methyl chloride	100	20	×	100	25	0		-			-			-			-		
Glacial acetic acid	100	70	0		-			-			-		100	24	×	100	20	O	
	100	100 70	0 0	100	25	0													
Glycerin	100 100	70 100	0	100	25	Q		-			-			-			-		
	100	20	0													100	20	0	
Chlorophenol	100	20 70			-			-			-			_		100	20	۳ ۱	
	100	100	×																
Xylene	100	20	×		-			-			-			-		100	20	0	
Chlorobezene	100	20	×		_			_			_			_			_		
	100	100	×				107												
Chloroform	100	20	×	100	b	0	100	b	0	100	b	O		-		100	90	Δ	
	100	20	0																
Dioxane	100	70 100	∆ ×		-			-			-			-		100	90	O	
	100	100	^																
Dichloroethare	100	70	×		-			-			-			-			-		
Ethyl nitrate	100	20	O	100	105	0		_			-	_		_	_	100	90	0	
-	100		Δ																
Carbon tetrachloride	100	20	×	90	b			-		90	b	0	100	24	×		-		
Trichloroethylene	100	20	×	100	b	0	100	b	0	100	b	0		-		100	90	×	
Toluene	100	20	×		-			-			145	O		-		100	90	0	
Benzophenone	100	20	0											-			-		
Benzaldehyde	100	70	0		-			-			-			-		100	20		
	100	100	×													100	90	×	
Benzyl alcohol	100	20	O	100	30	\triangle		-		100	30	0	100	25	0	100	90	\odot	
benzene	10	70	0	37	b	0	37	b	0	37	b	0						-	
Fomaldehyde	10	100	Õ	31	D	0	31	D	0	37	D	0		-			-		
Methylnaphthelen	10	100			_			_			_			-			_		
	100	20	0																
Methyl ethyl ketone	100	70	Δ		-			-			-			-		100	90	O	
Methyl alcohol	100	20	O	100	25	0		-			-			-		100	25	0	
	100	20	O													100	90	×	
Nitrobenzene	100	70	0		-			-			-			-					
	100	100	×	4-						4.5									
Acetic acid	100	20	Ô	10	b	O		_		10	b	O		_			_		
	100	70 100	×					-						-			-		
	100	20	Ô	95	30	0	95	30	0	95	30	0				100	90	\triangle	
Phenol												-		-					
	100	100	0													L			
Benzonic acid	100		A 1		-			-			-			-		100	-		
Motor oil	100 100	20 70	0		_			_			_			_		100	20	O	
	100	100	Δ																
Petroleum ether	100	20	0		-			-			-			-		100	20	0	
	100	20	0								101	0				100	20	0	
Kerosene	100	70	×		-			-						-			-		
	10	40	0	50	100	Δ	50	100	Δ	50	100	O							
Tartaric acid	10	60	0											-			-		
	10	80		400	07		400	400		400	400	6							
Oil and fats	100	70	O	100	25	O	100	180	O	100	180	O		-			-		
1							1								0				

(Note): "b" refers to the boiling point.

CAUTION-

Select the material of wetted parts with careful consideration of process characteristics. Inappropriate selection may cause leakage of process fluids, which greatly affects facilities. Considerable care must be taken particularly in the case of strongly corrosive process fluid such as hydrochloric acid, sulfuric acid, hydrogen sulfide, and sodium hypochlorite. If you have any questions about the wetted part construction of the product, be sure to contact Yokogawa.

Enquiry Specifications Sheet for pH/ORP Sensor

For enquires on the Yokogawa pH/ORP sensors, please tick (v)the appropriate box \Box and write down the relevant information in the blanks.

1.	General Information Company name Contact Person	;Department;												
	Plant name	;		-	-,									
	Measurement location	□ Indication, □ Recording, □ Alarm, □ Control												
			VAC, Hz											
		,	• • •	<u>0, 112</u>										
2	Measurement Condition	ons												
	(1) Process temperature	e;	to	Normally	[°C]									
	(2) Process pressure	;	to	Normally	[kPa]									
	(3) Flow rate(4) Flow speed	;	to	Normally	[L/min]									
	(4) Flow speed	;		Normally	[m/s]									
	(5) Slurry or contaminal (6) Name of process flu	nis ud	, \Box NO, \Box res.											
	(6) Name of process flu(7) Components of proc	nu ress fluid	, <u> </u>											
	(8) Others ;		,											
	(0) 0 11010 ,													
3.	Installation Site													
	(1) Ambient temperature ; (2) Location ; □ Outdoors,□ Indoors													
	(2) Location	; 🗆 Outde	oors, Indoors			-								
	(3) Others ;					-								
4.	Requirements			_										
	(1) Measuring range		; L) pH 0 to 14, L				7400							
	(1) Measuring range(2) Combined transmitte	er		PH202, LI PH450, I			₹100,							
	(3) System configuration selection; □ Sensor, □ Holder, □ pH/ORP Transmitter/Converter, □ Cleaning system,													
			Terminal box	, 🗆 Accessories			,							
	(4) Sensor cable length	l	; □ 3 m, □ 5 m,	🗆 7 m, 🗆 10 m, 🗆	15 m, 🗆 20 m, 🗆	m								
	(5) Sensor operating pr	essure	; □10 kPa or les	s, 🗆 Greater than '	10 kPa									
	(6) Type of holder			\Box Submersion, \Box I		Suspension,								
				ng ball, 🗆 Vertical f										
	(7) Cleaning method	_				ng, 🗆 Brush cleanin	g							
	(8) Sample temperature(9) Others ;				0 10 00 0									